
Efficient Inference of Large Language Models
on a Single GPU

ADVISORS: Radha Poovendran, Yan Li, Hongyu Yu

SPONSOR: Lenovo Research

• Problems Statement: Large Language Models (LLMs), like LLaMA 3-70B, require
over 140 GB of memory in FP16, far exceeding the capacity of cost-effective GPUs
like NVIDIA A40 (48 GB). Long-context inference further amplifies memory and
compute demands, resulting in high latency and low throughput[1].

• Objective: Enable efficient inference of LLMs on a single A40 GPU by:
○ Supporting ≥10k-token inputs
○ Ensuring ≤5% accuracy degradation
○ Achieving ≥10 tokens/sec throughput

Introduction

Methodology

Final Results & ConclusionOptimization Pipeline

Future Work

Milestones

Technology Combinations
We experimented with a variety of compression techniques:
Quantization：
• QTIP SOTA int2 weight-quantization method using incoherent

processing and Trellis-based codebooks. In our tests, it reduces
70B model size 132GB to 20GB, with WikiTexts PPL 3.59 to 7.19.
General-task accuracy drop remains under 20%.

• OmniQuant Introduces loss-aware weight clipping to selectively
constrain critical weights, enhancing quantization robustness.

• AWQ / GPTQ Widely adopted for inference due to ease of
integration and strong compatibility with LLaMA-3 models.

Weight Pruning / Sparsification:
• Wanda Prunes low-importance weights per neuron using

activation scores, supporting N:M sparsity for acceleration.
PPL(8B, 50% sparsity):8.28 to 11.97. Throughput: 35 tokens/s.

• SliceGPT Uses singular value pruning to remove weight matrix
rows/columns, boosting efficiency but adding structural
complexity that hinders integration. PPL (8B, 50% sparsity): 8.28
to 99.76. Throughput(4000 in, 256 out): 9.49 to 29.18 tokens/s.

• ShortGPT Prunes less critical attention blocks with controllable
accuracy trade-offs, validated through empirical analysis. Our
evaluation results shown in Fig 2.

KV Cache Optimization:
• PyramidKV: Reduces memory via layer-wise shrinking of KV

cache, preserving accuracy by retaining key cache information.
• KIVI / KVQuant: Compress KV cache to reduce memory with

minimal impact on performance. Our results shown in Fig 3.

• Investigate performance with ultra-long contexts (>50k tokens)
• Compress Larger Models (405B) & Other model architectures (e.g.MOE)
• Extend optimizations to consumer GPUs (NVIDIA RTX 4090 24GB)
• Integrate KV cache optimization methods into famous inference engines, e.g. SGLang/Dynamo
• Explore INT1/INT2 quantization with minimal accuracy loss
• Integrate structured sparsity like Wanda on quantized model to further improve throughput
• Develop methods to increase accuracy recovery for heavily pruned models (20+ layers)
• Explore combined optimization techniques to maintain quality while improving speed

Fig.1

Fig.2

Fig.3

Method Selection & Integration: We
investigated various compression
techniques to enable efficient inference on
a single A40 GPU. After evaluating several
options, we converged on a unified
pipeline focused on compression
effectiveness and ease of integration.

Quantization - AWQ: Selected over QTIP,
SmoothQuant, GPTQ for seamless
framework support, better
performance-efficiency trade-off, and
superior pruning synergy.

Pruning - ShortGPT: Outperformed
Wanda and SliceGPT with full attention
block pruning, minimal structural change,
and negligible degradation (≤10 layers).

KV Cache - PyramidKV: Enables 10K+
token inference via layer-wise importance
decay, retaining critical entries vs. uniform
truncation.

Why This Combination? AWQ enables
efficient low-bit inference; ShortGPT
enhances efficiency with minimal
disruption and easy integration;
PyramidKV further addresses kv cache
memory bottlenecks. The complementary
design enables real-world deployment on
constrained hardware.

Key Takeaways:
1) Seamless integration outweighs
standalone performance.
2) Cross-technique compatibility enables
unified pipelines.
3) Practical methods outperform complex
alternatives.

