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• Problems Statement: Large Language Models (LLMs), like LLaMA 3-70B, require 
over 140 GB of memory in FP16, far exceeding the capacity of cost-effective GPUs 
like NVIDIA A40 (48 GB). Long-context inference further amplifies memory and 
compute demands, resulting in high latency and low throughput[1].

• Objective: Enable efficient inference of LLMs on a single A40 GPU by:
○ Supporting ≥10k-token inputs
○ Ensuring ≤5% accuracy degradation
○ Achieving ≥10 tokens/sec throughput
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Technology Combinations 
We experimented with a variety of compression techniques:
Quantization：
• QTIP SOTA int2 weight-quantization method using incoherent 

processing and Trellis-based codebooks. In our tests, it reduces 
70B model size 132GB to 20GB, with WikiTexts PPL 3.59 to 7.19. 
General-task accuracy drop remains under 20%.

• OmniQuant Introduces loss-aware weight clipping to selectively 
constrain critical weights, enhancing quantization robustness.

• AWQ / GPTQ Widely adopted for inference due to ease of 
integration and strong compatibility with LLaMA-3 models.

Weight Pruning / Sparsification:
• Wanda Prunes low-importance weights per neuron using 

activation scores, supporting N:M sparsity for acceleration. 
PPL(8B, 50% sparsity):8.28 to 11.97. Throughput: 35 tokens/s.

• SliceGPT Uses singular value pruning to remove weight matrix 
rows/columns, boosting efficiency but adding structural 
complexity that hinders integration. PPL (8B, 50% sparsity):  8.28 
to 99.76. Throughput(4000 in, 256 out): 9.49 to 29.18 tokens/s.

• ShortGPT Prunes less critical attention blocks with controllable 
accuracy trade-offs, validated through empirical analysis. Our 
evaluation results shown in Fig 2.

KV Cache Optimization:
• PyramidKV: Reduces memory via layer-wise shrinking of KV 

cache, preserving accuracy by retaining key cache information. 
• KIVI  / KVQuant: Compress KV cache to reduce memory with 

minimal impact on performance. Our results shown in Fig 3.

• Investigate performance with ultra-long contexts (>50k tokens)
• Compress Larger Models (405B) & Other model architectures (e.g.MOE)
• Extend optimizations to consumer GPUs (NVIDIA RTX 4090 24GB)
• Integrate KV cache optimization methods into famous inference engines, e.g. SGLang/Dynamo
• Explore INT1/INT2 quantization with minimal accuracy loss
• Integrate structured sparsity like Wanda on quantized model  to further improve throughput
• Develop methods to increase accuracy recovery for heavily pruned models (20+ layers)
• Explore combined optimization techniques to maintain quality while improving speed
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Method Selection & Integration: We 
investigated various compression 
techniques to enable efficient inference on 
a single A40 GPU. After evaluating several 
options, we converged on a unified 
pipeline focused on compression 
effectiveness and ease of integration.

Quantization - AWQ: Selected over QTIP, 
SmoothQuant, GPTQ for seamless 
framework support, better 
performance-efficiency trade-off, and 
superior pruning synergy.

Pruning - ShortGPT: Outperformed 
Wanda and SliceGPT with full attention 
block pruning, minimal structural change, 
and negligible degradation (≤10 layers).

KV Cache - PyramidKV: Enables 10K+ 
token inference via layer-wise importance 
decay, retaining critical entries vs. uniform 
truncation.

Why This Combination? AWQ enables 
efficient low-bit inference; ShortGPT 
enhances efficiency with minimal 
disruption and easy integration; 
PyramidKV further addresses kv cache 
memory bottlenecks. The complementary 
design enables real-world deployment on 
constrained hardware.

Key Takeaways: 
1) Seamless integration outweighs 
standalone performance. 
2) Cross-technique compatibility enables 
unified pipelines. 
3) Practical methods outperform complex 
alternatives.


