Efficient Inference of Large Language Models

on a Single GPU Lenovo

« Problems Statement: Large Language Models (LLMs), like LLaMA 3-70B, require . — of Different O Across All
140 GB of gFPwe f 8 dine th " " ZPU Large Models & Stepl: Post-Training Quantization (PTQ) Method Selection & Integration: We ‘
over of memory in , far exceeding the capacity of cost-effective S N))) investigated various compression
like NVIDIA A40 (48 GB). Long-context inference further amplifies memory and Data Loader : oT - o [T I techniques to enable efficient inference on o,
compute demands, resulting in high latency and low throughput[1]. ¢ ¢ J 5 ¢) i a single A40 GPU. After evaluating several
* Objective: Enable efficient inference of LLMs on a single A40 GPU by: input e e, options, we converged on a unified ;™
> Supporting >10k-token inputs N . . L pipeline focused on compression
o Ensuring <5% accuracy degradation Model i @Howtoquantize? } : Method: AWQ i effectiveness and ease of integration.
o Achieving 210 tokens/sec throughput Compression Step2: Weight Pruning Quantization - AWQ: Selected over QTIP, **
ShortGPT SmoothQuant, GPTQ for seamless R
framework support, better arc_challnge arc_sasy winogrande ame2¢ gpqa_damond
performance-efficiency trade-off, and
§ . superior pruning synergy. M Dense (0righna) Dense + ShortGPT 10
Smaller and Faster KV Cache i EHowtoprune? i i Method: ShortGPT Pruning - ShortGPT: Qutperformed INT4 AWQ AWQ+ShortGPT10 [Short6PT 5+ AWQ
Optimization] Wanda and SliceGPT with full attention of Different Optimizat - Perplexity
Step3: KV Optimization based on Inference Engines block pruning, minimal structural change, !
l output e BE o s and negligible degradation (<10 layers). .
ache ache 5
|] H
parcifiation Quantization R . 3
— — token inference i ayer wise mportance |
) i i - <
b ng:;t\:;elght e Gy decay, retaining critical entries vs. uniform § *
{ odels ; {
S Efficient Inference Methods — g Quantized truncation. Y
-& Pipeline Why This Combination? AWQ enables .
efficient low-bit inference; ShortGPT Doso Domer INTANG _AWQ: ShoiGeTss
Compressed Llama 708 (Signan snondPT 10 SonGPT 10 oANG

enhances efficiency with minimal

Llama 708 inference inference on only one GPU Lower PPL values indicate better language model performance

on multi GPUs KV Cache disruption and easy integration;
Optimazation We experimented with a variety of compression techniques: Fig.1 Qtip Quantization Benchmarking PyramidKV further addresses kv cache Comparison of Model Size Reduction Techniques
Quantization: at i 2veightany wineutietng) Memory bottlenecks. The complementary
N ———— }
* QTIP SOTA int2 weight-quantization method using incoherent | design enables real-world deployment on
~ s constrained hardware.
KV CACHE Post-Training Weight processing and Trellis-based codebooks. In our tests, it reduces X
OPTIMIZATION Quantization Pruning 70B model size 132GB to 20GB, with WikiTexts PPL 3.59 to 7.19. = Key Takeaways: R
X N s . General-task accuracy drop remains under 20%. o 1) Seamless integration outweighs e
- Supports sparse caching, using only - Converts weights/activations to - Removes redundant or low- . 0)
m:fmst ,:'evamwpf"s dufmg Z ,ow‘wwmng(eg’ FP16 — INT4) importance weights. * OmniQuant Introduces loss-aware weight clipping to selectively e standalone performance. ™
decoding to reduce compute. post-training. . ;Enab{essp‘arse :om::ulanon for constrain critical weights, enhancing quantization robustness. “ 2) Cfrodss-tecf‘vmque compatibility enables “
+ Enables KV quantization to - Improves inference speed and faster and lighter inference. acdiee acen Loy werate ynified pipelines.
o A reduces mamoryibanewidth usage. + Can be srucured (eg. channelor | * AWQ / GPTQ Widely adopted for inference due to ease of g, - , 3) Practicsl methods outperform complex
+ Save memory usage and improve + Preserves accuracy using block pruning) or unstructured, integration and strong compatibility with LLaMA-3 models. Y i o I Grgnay smonerro " ginrtae TMaa
inference throughput, especially for calibration data. with trade-offs between accuracy N N e o alternatives.
long-context autoregressive tasks. and hardware compatibility. Weight Pruning / Sparsification: - # gpta+10layer prune Up to 75% Size Reduction with AWQ + ShortGPT-10
* Wanda Prunes low-importance weights per neuron using -
activation scores, supporting N:M sparsity for acceleration. o ModelSiee ELictobpl: DRUECEptest Acciiacy
PPL(8B, 50% sparsity):8.28 to 11.97. Throughput: 35 tokens/s. 04 75% 1 98.02 tok/s 10K+ Preserved
02 268 - 3 0% token inputs «
« SliceGPT Uses singular value pruning to remove weight matrix o 2268 = 3368 R token input penchmark scores
rows/columns, boosting efficiency but adding structural
RESEARCH complexity that hinders integration. PPL (8B, 50% sparsity): 8.28 relenor ey iy gpan i
N — N ———A— t0 99.76. Throughput(4000 in, 256 out): 9.49 to 29.18 tokens/s. .
o 9.3 RuV vs PyamidkV Thoughput (okens /)
« ShortGPT Prunes less critical attention blocks with controllable P

« Investigate performance with ultra-long contexts (>50k tokens)

4 o accur rade-offs, vali hrough empirical analysis. Our 2
Y:thmch:I | Colmprestslzn Il_t;ng-Seq lnfz;:::;" P‘e’rll?élr?nce dCCL‘ a[cyt ade \Ot 5'} a da@g‘ 5 ough empirical analysis. Ou] « Compress Larger Models (405B) & Other model architectures (e.g.MOE)
esearc mplementation nference alidation evaluation results shown in Fig 2.
P iation and Testing Optimization Optimazation and Report g : « Extend optimizations to consumer GPUs (NVIDIA RTX 4090 24GB)

KV Cache Optimization:
« PyramidKV: Reduces memory via layer-wise shrinking of KV
January February March April May June cache, preserving accuracy by retaining key cache information. « Integrate structured sparsity like Wanda on quantized model to further improve throughput
* KIVI / KVQuant: Compress KV cache to reduce memory with « Develop methods to increase accuracy recovery for heavily pruned models (20+ layers)
minimal impact on performance. Our results shown in Fig 3. « Explore combined optimization techniques to maintain quality while improving speed

« Integrate KV cache optimization methods into famous inference engines, e.g. SGLang/Dynamo
« Explore INT1/INT2 quantization with minimal accuracy loss

